
Page 1Mobile Solutions on Google Cloud Platform

Introduction

With over a billion people using smartphones and tablets in their daily lives,
there is a huge opportunity and growing demand for mobile solutions.
Users can choose from hundreds of thousands of applications, so in order
for mobile developers to be successful, it is important to create compelling,
engaging and connected user experiences. This typically requires a need for
backend components or services to feed the application with relevant data,
provide push notification, and allow interactions between users, and more.

With Google Cloud Platform you can easily build a backend for your mobile solution. You may be
starting small and hoping to get a lot of users or you may already have a large customer base that you
want to start serving through a new mobile experience. In either case, you can develop a backend that
scales to meet the growing demand. By leveraging Google infrastructure, you can focus on implementing
your application’s scenarios and not have to worry about things such as managing machines or
load balancing.

Requirements
Typical requirements for a compelling mobile solution include:

•	 Support for Android and iOS devices through native applications

•	 Storage, retrieval, and processing data outside of mobile devices

•	 Orchestrating push notification to Android and IOS devices

•	 Geo-location awareness and geo-proximity search

•	 User authentication

•	 High scalability

You can easily meet these requirements when you build your mobile solution on
Google Cloud Platform.

Mobile Solutions on
Google Cloud Platform

http://blogs.strategyanalytics.com/WDS/post/2012/10/17/Worldwide-Smartphone-Population-Tops-1-Billion-in-Q3-2012.aspx

Page 2Mobile Solutions on Google Cloud Platform

Scope
This paper presents the key components of a mobile solution built on Google Cloud Platform. It includes
both components that are common to most mobile solutions and optional components that might be
useful in more specific contexts.

This paper is intended for architects and developers interested in building their own backend and
designing the communications between mobile clients and the backend. Building the actual mobile
clients is not covered in this document beyond information relevant to communicating with the backend,
authenticating users and receiving push notification.

High-Level Overview
The key components in the proposed mobile solution architecture are:

•	 Your mobile clients - any combination of Android, iOS and HTML/JavaScript clients.

•	 Your mobile backend application which is responsible for serving requests from the clients.

•	 The communication layer between the mobile clients and the backend.

•	 Various cloud services for storing your application data, delivering push notification, etc.

This document walks you through the steps required for assembling a mobile solution step by step,
leading to a complete architectural diagram presented at the end.

Your Mobile Backend in the Cloud [1]
The ability to have your own backend means that you can run your custom code on the backend and
not be limited to only calling 3rd party services from your mobile client applications. By leveraging Google
Cloud Platform, you can easily have your own backend in the cloud. Google App Engine is an ideal
platform for running your code, especially code that can be called from your mobile client devices.

Primary role of your custom code in the backend
The approach for building the backend as presented in this document allows you to focus on developing
your core scenarios. Your two main tasks are defining your domain specific Resources and implementing
custom logic needed for specific operations on these Resources. Your mobile clients will be able to easily
access these Resources and invoke these operations through your API that can be easily exposed from
your mobile backend as described later.

Your mobile backend may retrieve some of Resources from external services without storing them within
your application. But typically your mobile solution will have at least some Resources that are managed
and persisted as part of your solution.

For example, if you are building an application that includes reviews, you can define Review as one of
your Resources. If your application allows mobile shopping, you may include reviews of products in the
inventory. If your application lists movies, you may include movie reviews. If you are developing a casual
game you may define CompletedPlay as an entity with attributes such as score, date, user id, and more.

Then you can define operations on these Resources such as inserting a new review, adding a usefulness
rating to a review, retrieving the reviews sorted by their usefulness rating or retrieving top scores
for a day.

[1]
In this document, a
backend refers broadly
to the part of a mobile
solution that runs out-
side of client devices. It
should not be confused
with Google App Engine
backend instances,
which represent a type
of instances that have
different characteris-
tics than default App
Engine instances. In
many mobile solutions,
default Google App
Engine instances should
be sufficient. However,
if you have specific
requirements, you can
assemble a mobile solu-
tion using a “backend”
composed of any com-
bination of default App
Engine instances and
backend instances.

https://cloud.google.com/resources/articles/mobile-application-solutions#architecture-diagram
http://developers.google.com/appengine/docs/java/backends/overview?hl=en
http://developers.google.com/appengine/docs/java/backends/overview?hl=en#Properties_of_Backends
http://developers.google.com/appengine/docs/java/backends/overview?hl=en#Properties_of_Backends

Page 3Mobile Solutions on Google Cloud Platform

Depending on your scenario and requirements, the implementation of these operations and your
custom code won’t always be trivial. Your code may also do a lot of things besides synchronously
handling simple API requests from the clients. You may want to do background processing, geo-proximity
based searches, or push notification, all of which are possible when running your mobile backend on
Google Cloud Platform. As a result, you can focus on writing your application-specific code and not
infrastructure code.

What you don’t have to worry much about
Running your mobile backend code on Google App Engine, according to the recommended design,
offers you the following benefits of Google Infrastructure:

•	 Automatic scalability

•	 Automatic load balancing across instances of your mobile backend

•	 Static content serving and caching

•	 Reliability, performance, and security features

•	 Monitoring and management

•	 Configurable DoS protection

•	 Integration with Google Accounts for OAuth2 authentication (for both Android and iOS clients)

Communication between your mobile clients and
your mobile backend
There are many possible patterns for communication between mobile clients and the backend. However,
over the last decade REST-based model has emerged as a predominant one.

Google Cloud Platform offers a powerful new technology called Google Cloud Endpoints [2] that
simplifies, not only exposing REST API from your mobile backend, but also consuming REST APIs
from Android, iOS, and JavaScript clients. It also provides OAuth2-based authentication, so your
mobile backend code can know the identity of the caller. Cloud Endpoints service leverages Google
infrastructure so you can count on it to scale to meet the demand. You can also use tooling support
to have necessary boilerplate code auto-generated, so you can focus on writing code specific to your
application scenarios.

Please follow Google Cloud Endpoints documentation for information on how to annotate your
application code to have your API exposed through Google Cloud Endpoints, how to configure OAuth2
authentication, and how to generate strongly typed Android and iOS clients as well as lightweight
JavaScript clients. If you use Eclipse, you can benefit from additional integrated tooling support provided
by Google Plugin for Eclipse.

Although you can build your mobile backend without using Google Cloud Endpoints (and many parts
of this document would still be applicable), the proposed solution assumes the usage of Google Cloud
Endpoints.

[2]
As of February 2013,
Google Cloud End-
points is an experi-
mental feature.

https://developers.google.com/appengine/whyappengine#scale
https://developers.google.com/appengine/docs/whatisgoogleappengine?hl=en
https://developers.google.com/appengine/docs/java/config/appconfig#Static_Files_and_Resource_Files
https://developers.google.com/appengine/whyappengine#reliable
https://developers.google.com/appengine/docs/adminconsole/index
https://developers.google.com/appengine/docs/java/config/dos?hl=en
https://developers.google.com/appengine/docs/java/endpoints/overview
https://developers.google.com/eclipse/

Page 4Mobile Solutions on Google Cloud Platform

Assembling Your Mobile Solution
The basics
As mentioned in previous sections, the essential components (Fig. 1) in the proposed mobile solution
architecture are:

1.	Android and/or iOS mobile clients.

2.	Google Cloud Endpoints used for communications between the clients and the backend over
	 REST API with optional OAuth2 authentication.

3.	Your mobile backend application code running on Google App Engine and responsible for serving
	 requests from the clients.

￼

Figure 1.
Essential components
in proposed Mobile
Solutions architecture

[3]
Section 4.2 of Google
App Engine Terms of
Service describes your
obligation to protect
the privacy and legal
rights of your End
Users, including the
requirement to pro-
vide a legally adequate
privacy policy about
the use of data you
collect and to obtain
all necessary consents
from your end users
to the collection, use,
monitoring or disclo-
sure of such data.

Storing data
A typical requirement for a mobile solution with a backend is to store data outside of client devices [3].
This data can be categorized into two groups (Fig. 2):

1.	Large, and typically binary, objects such as images
These objects can be a part of your solution, for example, product images for a dynamic inventory of
gifts offered by your mobile application. Or, you may also want to allow your users to upload their
pictures, avatars, and other images. In both cases, for storing this kind of data you can use Google Cloud
Storage, a service that stores objects and files up to terabytes in size. See also “Serving and processing
images” below.

2.	Fine grained properties and entities
These properties and entities might include information about the last completed level in a mobile game,
information about users, user’s device registration for push notification, records of in-app purchases, or
other similar application-specific data.

The properties of these entities can also include a reference, for example, object name and optionally
bucket name or URL, to objects stored in Google Cloud Storage.

With your mobile backend hosted on Google App Engine, a natural place to store this kind of data is App
Engine Datastore. It provides a NoSQL [4] schemaless object data store, with a query engine and atomic

https://developers.google.com/appengine/terms
https://developers.google.com/appengine/terms
https://developers.google.com/appengine/terms
https://developers.google.com/storage/docs/getting-started
https://developers.google.com/storage/docs/getting-started
https://cloud.google.com/resources/articles/mobile-application-solutions#serving-and-processing-images
https://cloud.google.com/resources/articles/mobile-application-solutions#serving-and-processing-images
https://developers.google.com/appengine/docs/java/datastore/
https://developers.google.com/appengine/docs/java/datastore/

Page 5Mobile Solutions on Google Cloud Platform

transactions. These entities will often map to the Resources exposed over Google Cloud Endpoints API.
When using appropriate annotations you can leverage Google Plugin for Eclipse to generate skeleton
code for typical list/get/insert/update/remove operations using App Engine Datastore.

[4]
If you prefer to use re-
lational SQL database
you can choose to
use Google Cloud SQL
either instead of Data-
store or complementa-
ry to Datastore.

Figure 2.
Storing Data

Figure 3.
Optimizing data access
with Memcache

Optimizing data access with Memcache
If your mobile clients are making frequent requests to the backend to retrieve the same data, it wouldn’t
be optimal to retrieve this data from persistent storage for every request. For example, if you are building
a mobile application that shows movie reviews, it is likely that most users would be retrieving reviews
about one of a handful movies that are currently in theaters and there will be significantly fewer requests
for reviews of the remaining thousands of movies that the backend stores in a persistent storage.

A backend running on Google App Engine can use a distributed in-memory data cache service called
Memcache to store and retrieve frequently accessed data (Fig. 3). Using Memcache not only allows your
mobile solution to have higher performance and to scale better, but also reduces your cost of accessing
App Engine Datastore as your application will be sending fewer requests to App Engine Datastore.

https://developers.google.com/appengine/docs/java/datastore/jpa/overview-dn2#Class_and_Field_Annotations
http://developers.google.com/cloud-sql/
http://developers.google.com/cloud-sql/faq#choice
http://developers.google.com/cloud-sql/faq#choice
http://developers.google.com/cloud-sql/faq#choice
https://developers.google.com/appengine/docs/java/memcache/

Page 6Mobile Solutions on Google Cloud Platform

￼

Push notification
Push notification is very important to the overall user experience on mobile devices. Depending on the
client platform, your mobile solution can use this technology to display “toasts” and other notifications on
users’ devices, even if your mobile application has not been running. It can also be used to keep feeding
the mobile client application with relevant data.

With your mobile backend code running on Google App Engine, you can orchestrate sending push
notifications to your users by leveraging the following technologies:

Asynchronous processing with Task Queues
Sometimes it is not possible, or desirable, to do all the work associated with a request sent from a
mobile client before the response needs to be sent back to the user’s device. For example, let’s say you
are developing a social application that notifies user’s friends when the user checks into a restaurant.
You may want to record the check-in occurrence synchronously, together with recording the fact that
the notification needs to be processed, and then send the acknowledgment response to the client
immediately without waiting until all notifications are processed.

Your code running on Google App Engine can use a service called Task Queues to enqueue information
about work that needs to be done asynchronously (i.e., “tasks”). In the example above, your application
could enqueue a task to notify Joe’s friends that Joe checked into Trendy Perks restaurant at 7:35 pm.

Typically, you would configure Task Queue service to send the enqueued tasks (push model) to your
code running on Google App Engine as HTTP requests to a chosen URL. Your application can process
these requests through regular web request handlers. In the example above, your request handler could
retrieve the task information from the HTTP request, look up Joe’s friends, and then notify each of the
friends by sending a push notification. You can configure the tasks to be processed by the same Google
App Engine instance(s) that are processing requests from mobile clients or by dedicated instance(s).

Alternatively, your code can pull the tasks from the queue(s). This can be done by either your mobile
backend code running on Google App Engine, or by your code running outside of App Engine, which can
be used to process tasks by Google Compute Engine instances.

In either case, processing tasks is typically the second most common responsibility your custom code
running on Google App Engine would have, in addition to processing requests from mobile clients over
Google Cloud Endpoints, as mentioned in previous sections.

Figure 4.
Asynchronous
processing with Task
Queues

http://developer.android.com/guide/topics/ui/notifiers/toasts.html
https://developers.google.com/appengine/docs/java/taskqueue/
https://developers.google.com/appengine/docs/java/taskqueue/overview-push
https://developers.google.com/appengine/docs/java/taskqueue/overview-push#Push_Queues_and_Backends
https://developers.google.com/appengine/docs/java/taskqueue/overview-pull

Page 7Mobile Solutions on Google Cloud Platform

•	 Google Cloud Messaging (GCM) - a Google service that allows you to send data to your users that
	 have your client application installed on their Android-powered devices. If you use Eclipse you can
	 have skeleton code generated by Google Plugin for Eclipse.

•	 Sockets API [5] to send push notification using Apple® Push Notification Service to your iOS users.

An example of this might be to send push notifications to the users of your mobile solution when their
friend checks into a restaurant or posts a review (Fig. 5).

Serving static content
In some cases, you may also benefit from packaging static content as part of your Google App Engine
application and then having it served by Google App Engine infrastructure using dedicated servers and
caches without having your mobile backend code involved at all. This is typically more relevant to HTML/
JavaScript clients than to native iOS or Android applications and is applicable to resources such as
images, CSS style sheets, or browser JavaScript code.

Serving and processing images
If your mobile solution includes a manageable number of static images, you can package them (often in
multiple resolutions) as part of your native Android and iOS applications. This applies, for example, to
various icons that are part of your application and are used to build the UI of your client applications.

Other category of images are images that are not part of your applications, but are, rather, related to the
data that your application processes, such as thumbnails of movies in your movie related application,
pictures of products that can be gifted through your application, or avatars in your game or social
applications. If you can store such images in resolutions and formats optimized for your mobile clients
then you can upload them to Google Cloud Storage and then provide direct URLs to these images to the
mobile clients. This approach is very scalable as it allows mobile clients to retrieve these images directly
from the scalable cloud storage without involving your mobile backend code.

In some cases, you may want to manipulate and process images in addition to storing them. For
example, you may want to serve the images in dynamically adjusted sizes depending on the resolution
of your client devices. In such scenarios you can use Google App Engine Images Service to resize, rotate,
flip, and crop images, as well as to enhance photographs using a predefined algorithm. These operations

[5]
As of early January
2013 Sockets API is
a feature available
for Trusted Testers
only and doesn’t have
production support.

Figure 5.
Push Notification

http://developer.android.com/google/gcm/index.html
https://developers.google.com/eclipse/
https://developers.google.com/appengine/docs/java/config/appconfig#Static_Files_and_Resource_Files
https://developers.google.com/storage/docs/getting-started
https://developers.google.com/appengine/docs/java/images/

Page 8Mobile Solutions on Google Cloud Platform

Full text and geo-proximity (location based) search
If you want to give your users full text search capability over some of the structured data managed by
your mobile solution, you can leverage Google App Engine Search API [6]. For example, if your application
provides access to a large and dynamic inventory of items, your users may benefit from being able to find
items by entering words that are part of an item’s name or description, even if you provide a convenient
touch UI with categorization, paging, etc.

To use Search API, you can construct “documents” that contain searchable data and then add these
“documents” to an index. Then, your mobile backend can construct search queries, including full-text
search queries, and run them against the “documents” in the index. In the example above, each item
in the inventory could be mapped to a “document” in the index with properties such as name,
description, etc.

Your mobile solution may also perform geo-proximity search if, for instance, you wanted to retrieve the
list of nearby stores. You can avoid the complexity of building such functionality yourself and simply
leverage Search API for geo-proximity search [7]. The basic flow is very similar to the process described
above for full text search. You can simply add geo-location as one of document properties and then
include geo-proximity condition in your search queries.

can be performed on images from, among other sources, Google Cloud Storage. The modified images
can then be served to the clients directly from the dynamic image serving infrastructure provided by
Google without involving your mobile backend code. Your code is responsible just for using the Images
Service API to obtain the appropriate image URL and for providing this URL to the mobile clients.

[7]
As of December 2012,
geo-proximity search
works in applications
deployed to App
Engine. However, it
doesn’t work on local
dev server.

[6]
As of early January
2013, App Engine
Search API is an exper-
imental feature with
limited free quotas.

Figure 6.
Serving and processing
images

https://developers.google.com/appengine/docs/java/search/
https://developers.google.com/appengine/docs/java/search/overview#Performing_Location-Based_Searches
http://developers.google.com/appengine/docs/java/search/overview#Quotas

Page 9Mobile Solutions on Google Cloud Platform

Custom maintenance and other scheduled jobs
Besides processing requests from the mobile clients synchronously through Google Cloud Endpoints
and asynchronously using Task Queues, your mobile backend code may need to do some processing
at various regular or semi-regular intervals. For example, you may want your mobile solution to send
push notification to your mobile users every morning with a relevant local offer or you may want your
solution to do various application specific maintenance jobs daily or few times a day. For example, your
application may offer premium subscriptions. When the subscriptions expire, or about to expire, you
may want to do various related processing, for example, send an email using Mail API, deactivate user
accounts, etc. You may also want your mobile backend to update some data cached in Memcache every
10 minutes or update statistics of top players every hour.

With your mobile backend code running on Google App Engine, configuring such scheduled jobs is
straightforward with Cron Service. You can configure it to invoke some URLs in your mobile backend at
the requested intervals or specific times.

Storing and Analyzing Application Logs
Application logs can provide a lot of insight about how your users are using your mobile solution and
how your mobile backend behaves. With your mobile backend code running on Google App Engine, you
can use Logs API to retrieve the application logs. Then, you can upload them to Google Cloud Storage
and ingest them into Google BigQuery. If your mobile client application allows users to make a lot of
interactions within the applications without sending regular requests to the backend, you may want to
augment the backend logs with logs that the client application can collect and periodically send to your
mobile backend through your API exposed over Google Cloud Endpoints.

Figure 7.
Full text and geo-
proximity search

Figure 7.
Full text and geo-
proximity search

https://developers.google.com/appengine/docs/java/mail/
https://developers.google.com/appengine/docs/java/config/cron
https://developers.google.com/appengine/docs/java/logs/
https://developers.google.com/bigquery/

Page 10Mobile Solutions on Google Cloud Platform

Running code outside of App Engine sandbox
If you can build your complete mobile backend using runtimes supported by Google App Engine [8],
you will be able to avoid having to deal with infrastructural issues such as auto scaling, load-balancing,
failover, etc. However, you may have requirements that are not suitable for running in App Engine
sandbox. For example, you may want to use some C/C++ libraries, custom binaries, or Perl programs as
part of asynchronous request processing or batch processing.

In such scenarios, you can use Google Compute Engine [9] to run the parts of your mobile backend not
suitable for hosting on Google App Engine.

When code running on Compute Engine is used for batch processing or asynchronous request
processing [10], your code that runs on Google App Engine can enqueue tasks into a pull queue (or
multiple queues) and your code that runs on Google Compute Engine can pull these tasks using Task
Queue REST API [11].

[8]
As of December 2012,
App Engine supports
Java 5 and 6, Python
2.7.3 and 2.5.2, as well
as Go runtime (the last
one as experimental
feature).

[9]
As of December 2012,
Google Compute
Engine is available
to selected users in
limited preview.

[10]
Google Compute
Engine can be used
also in other mobile
solutions scenarios,
but such usage is
beyond the scope of
this document.

[11]
As of December 2012,
Task Queue REST API
is an experimental
feature.

Figure 9.
Running code outside
of App Engine sandbox

Figure 8.
Scheduled jobs with
Cron Service

Other relevant services and APIs
Google offers many other services and APIs that can be used in mobile solutions. These include: AdMob,
Analytics, and various Maps APIs, such as Places API, Android Maps, and iOS Maps SDKs. The usage of
these services and APIs is beyond the scope of this document.

https://cloud.google.com/products/compute-engine
https://developers.google.com/appengine/docs/python/taskqueue/rest/
https://developers.google.com/appengine/docs/python/taskqueue/rest/
http://developers.google.com/appengine/docs/whatisgoogleappengine
https://developers.google.com/mobile/
http://www.google.com/ads/admob/
https://developers.google.com/analytics/devguides/
https://developers.google.com/maps/
https://developers.google.com/places/
https://developers.google.com/maps/documentation/android/
https://developers.google.com/maps/documentation/ios/

Page 11Mobile Solutions on Google Cloud Platform

Architecture diagram
The following architecture diagram (Fig. 10) illustrates the components in the solution:

￼

Figure 10. Architecture Diagram of the proposed Mobile Solution. View full size

https://cloud.google.com/i/articles/mobile-app-10.png

Page 12Mobile Solutions on Google Cloud Platform

Conclusion
By leveraging Google Cloud Platform, you can easily build a backend for your mobile solution. You
don’t have to worry about plumbing and infrastructure. Your solution can be highly scalable and meet
requirements for building compelling applications. Among other things, it can use integrated user
authentication, support Android and iOS native applications, store, retrieve and process data outside of
mobile devices, as well as orchestrate push notification and use geo-proximity search.

Sample Application
You can download the Mobile Shopping Assistant sample application (App Engine backend and Android
client) and the corresponding walkthrough document to see how the key parts of the architecture
(presented in this document) have been implemented for a particular scenario. The sample application
features REST API exposed through Google Cloud Endpoints with integrated OAuth-based client
authentication, geo-proximity search, push notification, asynchronous request processing, scheduled
tasks, and serving images from Google Cloud Storage.

https://github.com/GoogleCloudPlatform/solutions-mobile-shopping-assistant-backend-java
https://github.com/GoogleCloudPlatform/solutions-mobile-shopping-assistant-android-client
https://github.com/GoogleCloudPlatform/solutions-mobile-shopping-assistant-android-client

